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ASSTRACT 

A n  ion  thrus tor  system, including a new type of mercury feed system and 

a shielded neutral izer ,  has been designed and t e s t ed  at a th rus t  l e v e l  of 

0.5 millipound. The use of 8 r a d i a l  f l a w  propellant d i s t r ibu to r  and a n  

oxide-coated brush cathode resu l ted  i n  discharge power lo s ses  one-fourth of 

those previously encountered at t h i s  t h rus t  l eve l .  Different lengths and 

diameters of t he  discharge chamber wer? t e s t ed  t o  es tab l i sh  a compromise 

between discharge power losses  and propellant u t i l i z a t i o n .  The f i n a l  design 

discharge chamber w a s  5-centimeters i n  d.iameter and 7.5-centimeters long. 

The complete f l ight- type thrus tor  system used a permanent magnet f i e l d  and 

weighed (without propel lant)  1 .36  kilograms. The power t o  th rus t  r a t i o ,  

including power t o  heat t he  feed system and t h e  neutral izer ,  was 222 wat ts  

per millipound at a th rus t  of 0.65 millipound and a spec i f ic  impulse of 

3050 seconds. The oxide-coated brush cathode w a s  endurance t e s t ed  1553 

hours i n  a thrus tor  and an iden t i ca l  cathode w a s  heat cycled i n  a separate 

t e s t  for 418,000 cycles before f a i lu re .  

INTFODUCTION 

The primary objective of t h i s  work w a s  t o  demonstrate mercury electron- 

bombardment ion  thrus tor  performance su i tab le  f o r  s t a t ion  keeping and 

a t t i t u d e  control  of s a t e l l i t e s .  For simplicity,  t h e  same bas ic  th rus tor  

design and th rus t  l e v e l  were contemplated fo r  both the  station-keeping and 
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0.5 millipound and a propellant u t i l i z a t i o n  eff ic iency of 80 t o  50 percent.  

I n  the  course of' the  research program, various discharge chamber diameters 

and lengths were t e s t ed  t o  determine minimum discharge chamber lo s ses  and 

m a x i m u m  propellant Q t i l i za t ions .  I n i t i a l l y  the program w a s  conducted w i t h  

an eas i ly  varied electromagnetic f i e ld ,  and l a t e r  e f f o r t  was concentrated 

on the  use of permanent magnets t o  reduce weight, power and system complexity. 

The mercury propellant feed system chosen w a s  a posit ive-pressure l i q u i d  

feed t o  a heated porous tungsten plug which controlled the  vapor flow r a t e  

and separated the  vapor-liquid phase. I n  addition, t he  porous plug served 

as an on-off valve because neglible flow passed through the plug when it 

w a s  cold. 

as well  as fo r  an extended t e s t  with a preliminary design. 

Performance data are  presented f o r  two f l igh t - type  thrus tors  

APPAFAWS ANG PROCECTJRE 

FiEirec l ( 9 )  and 1 (h) are nhntograohs of t he  f l i g h t - t p e  thrus tor  with 

an electromagnetic f i e l d  eo i l ,  and figure l ( c )  i s  a photograph of a permanent 

magnet version. Figure 2 i s  a schema€ic view of a thrus tor ,  indicat ing the  

r e l a t i v e  locat ions of t h e  dischasge chamber, cathode, d i s t r ibu to r ,  magnetic 

c o i l ,  and accelerator  gr ids .  

Flight - m e  Thrustor 

The nominal s i ze  (anode diameter) of t h e  f l igh t - type  thrustof  was 

determined t o  a la rge  extend by the  l i fe t ime requirements of t h e  accelerator  

g r id .  Deta i l s  of t he  accelerator @;ride diameter select ion may be found i n  

appendix A. Brief ly ,  t he  gr id  erosion i s  d i r e c t l y  r e l a t ed  t o  t h e  square 

of beam current density and inversely t o  t h e  propellant u t i l i z a t i o n .  

t h e  des i red  l i fe t ime of 13,000 hours and th rus t  of 0.5 millipound, t he  

For 
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minimum accelerator diameter w a s  determined t o  be 3 t o  5 centimeters at 

propel lant  u t i l i z a t i o n  e f f i c i enc ie s  of 80 t o  50 percent. 

design w a s  5 centimeters i n  diameter. 

both fabricated of a 0.16-centimeter-thich molybdenum sheet.  

d r i l l e d  i n  both gr ids  on a 0.635-centimeter equalateral  t r i angu la r  spacing. 

The screen gr id  and accelerator  holes were 0.476 and 0.317 centimeters i n  

diameter, respectively.  The accelerator  holes were made smaller t o  both 

increase the web mater ia l  between holes ( thus  increasing the  l i f e t ime)  and 

t o  somewhat decrease t,he loss of neut ra l  propellant, through t h e  g r i d  system. 

The screen-accelerator g r id  separation w a s  held a t  0.15% .01 centimeter by 

shielded aluminum oxide b a l l  insu la tors .  

The f i n a l  accelerator  

The accelerator  and screen g r ids  were 

Holes were 

By using t h e  r e s u l t s  of t h e  var iah le  geometry t .bu .s tor  t e s t s ,  t h e  

discharge chamber w a s  designed with an anode diamet,er 

and a length La of 7.5 centimet*ers. All sheet metal p a r t s  were made of 

nonmagnetic s t a in l e s s  st .eel .  A magnetic c o i l  produced a tapered f i e l d  with 

magnitudes of 56 gauss at t h e  d i s t z ibu to r  and 24 gauss a t  the  screen. 

permanent magnets produced a f i e l d  with a range of near zero t o  a m a x i m u m  

of 105 gauss. Four rod magnets, 0.'785 centimet,er i n  diameter and 8 .25  cen- 

t imeters  long were located between mild s t e e l  pole pieces.  

appears i n  a photograph i n  f igure  l .(a) and i s  a l so  sketched i n  f igu re  3. 

Da of 5 centimeters 

The 

This con.fi.guration 

The chamber cathode was a tant.alum brush (0.5 cm i n  diameter and 1 . 2  cm 

long) coated with Radio Mix No. 3 (57 percent BaC03, 42 percent SrC03, and 

1 percent CaC03) and had a surface a rea  of 1.8 square centimeters.  

cathode w a s  supported between two copper rods and w a s  cen t r a l ly  located i n  

f ron t  of and paral l .e l  t o  t he  plane of t he  d i s t r i b u t o r  ( f i g .  3 ) .  

The 

The cathode 
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w a s  approximately 1 centimeter from the d i s t r ibu to r .  The cathode brush 

diameter w a s  sized l a rge  enough t o  make the  required l i f e t ime  f eas ib l e  and 

ye t  s m a l l  enough t o  reduce the  thermal losses .  

by the  emitt ing a rea  required. 

nominally required (nominal emission, 1 A/sq cm) because temperature gradiants 

i n  a un i t  of t h i s  s m a l l  s i ze  g rea t ly  reduced the  emission at t h e  ends. 

The length w a s  determined 

T h i s  surface a rea  was ac tua l ly  l a rge r  than 

The propellant d i s t r ibu to r  w a s  of a r a d i a l  type (first reported i n  

reference 4 )  t o  increase t h e  cathode l i f e t ime  and a t  t h e  same t i m e  produce 

a high thrus tor  t o t a l  eff ic iency.  

p l a t e  w a s  2.54 centimeters, and t h e  distance between the  cathode mounting 

block and t h i s  p l a t e  w a s  about 0.32 centimeter. 

d i s t r ibu t ion  were not attempted i n  t h i s  program. 

Propellant Feed System 

The inner hole diameter of t he  d i s t r ibu to r  

Other types of propellant 

i n  generai, zne Ieea s y s ~ e m  cuiibibieG ~JT a D & L L C ~ .  i-ESEi-i-G<i- fez 

l i q u i d  mercury (not shown i n  f i g .  l ( b ) ) ,  a molybdenum tube leading t o  a 

heated porous tungsten plug, and a thermal  i so l a t ion  tube connecting t h e  

porous plug t o  t h e  rear of the  thrustor .  Inside t h e  thrus tor  and behind 

tlhe d i s t r ibu to r  t h e  mercury vapor passed through a f i n e  screen which served 

to r e t a r d  t h e  flow of ions from t h e  discharge chamber upstream i n t o  t h e  

higher pressure region near t h e  porous plug ( r e f .  5 ) .  

The reservoir  w a s  a 7-centimeter-diameter hollow metal sphere. Pa r t  

of t h e  volume w a s  charged with an ine r t  gas t o  a pressure of 0.5 atmosphere 

t o  ensure pos i t ive  flow t o  the  porous plug. Gravity w a s  normally used t o  

maintain t h e  posi t ion of t he  mercury i n  t h i s  sphere. 

na tu ra l ly  be required fo r  t he  zero-gravity environment of a space mission. 

A diaphragm would 
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A s ingle  sphere of 7 -centimeter diamet.er should have su f f i c i en t  volume t.o 

hold both the i n e r t  gas and t h e  mass o f  mercury required (about 1500 g) 

fo r  one thrustor operat5ng at O.^JX-ampere beam current (0.5 mlb th rus t  

at 4000 V net accelerating energy) for  a 5003-hour t e s t  with 50-percent 

propellant u t i l i za t , ion  ef:f'i;:ienrg-. 

A molybdenum tu5e was chosen I lo duct t he  mercury from the  reservolr  

t o  t h e  porous tcngsr.en p1.u.g b9t.l; because of i t s  res is tance t o  corrosion 

by hot mercury and i t s  compat.ibili.+y withporous tungsten. 

t he  tube, pmous tungsten 

the  RESULTS ANI) DIS2JSS:KN sect ion of t h i s  paper. 

plug w a s  0.3 centimeter i n  diameter, 3.97 centimeter th ick  and electron-  

beam welded t o  the  moly3denum tu5e. A thermocouple was spot welded on t h e  

side of t he  t i p  t o  i.ndi.cat;e t h e  operating t.zmperature. Thermocouples were 

a lso  spot welded along the  mo1ybde:niu-n tube t o  measure thermal eondu.cti.on. 

Porous tungsten mat;erid.s .w pore r a d i i  of 2 .to 4 microns and dens i t i e s  

of 70 t o  80 percent were used t.o fabrica;t:e t h e  porous plugs fo r  the  several. 

vaporizers used. 

element w a s  kept. small. to short,en the thermal time response and t o  reduce 

the  operating power. 

A sketch of' 

and- swaged ni,chrome heater i s  included i n  

The porous t m g s t e n  

?'he s i ze  r,f t he  porous plug, molybdenum tube, and hea.t,er 

The porous p:Lug discharged i.nt,o t.he .025-centimeter w a l l  thickness 

thermal i so la t ion  t,ute, wkLi ??I. was 1.. 9 cent.imeters i n  diameter. and 7.6 ten,- 

t imeters long. An addit;:imaL swaged nictrame heater w a s  placed a t  the  

middle of the thermal isol.at.ion tu:be. T h i s  heater served t o  fu r the r  

thermally iso1at.e tihe t:kru.st.or and the  feed system. With 3 wat . t , s  ad.ded 

at t h e  center of the  tube, t h e  t - k u s t o r  end of t h e  t,uhe could vary f rm 
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300' K (cold st.art> t o  530' K (equilibrium operating temperature), and t h e  

vaxiation of the  porous plug temperature f o r  a constant plug heater input 

would only be 550' t o  553' K. 

only a 13-percent increase i n  the  propel.l.ant flow ra t e .  

i n  t.he flow due t o  possible plug conductance or emissivity changes of t h e  

vaporizer surfaces, 0nl.y an open loop  co.ntro1 would be required t o  maintain 

t h e  propellant flow x i t h i n  t h i s  lO-percent. var ia t ion .  For performance or 

endurance t e s t s  t.he a.c:tu.al porous p1Lu.g temperature w a s  used together with 

a ca l ibra t ion  cu.me t o  determine the  propellant flow ra t e .  

This small r i s e  i n  plug temperature represented 

If no changes occur 

Neutralizer 

"he neu txd ize r  cathode consisted of a tantalum brush 0.25 centimeter 

i n  diame-ker and 0.7 centimet.er long, coat.ed with Radio Mix No. 3 oxides. 

A s  t h e  emission density- sf the  neutzaiizer cathode w a s  much less than t h a t  

- -  J '-- 2 1  --I------ -L--L-- +L- imn--*.+-.n+ d j , m ; m m  nnnsiaer'd+inn W-S no+. p m i s s i n n  
UL U I I C  U"LDLlKLL6L <.LIL(LIIUL-I y " A L L  ""Ajy"' -I--" -.--- ~-~ - ~~~ -. . 

l imi t a t ions  but  ra ther  cath0d.e r e l i a b i l i t y  and space-charge l imi ta t ions .  

The neut ra l izer  w a s  heated by passing an a l te rna t ing  current through t h e  

care  wires and w a s  suppwted by- two c3pper rods. 

ill f i g .  l ( a ) )  were used for  redundancy. 

placed between t-he neutral izer  and the accelerator  gr id  t o  prevent, d i r e c t  

'beam impingement on .the n e u t r a i z e r  . 
0.1 centimeter more than .the edge cif t he  cathode in to  the  beam. 

neut ra l izer  cathode w a s  located approximat,ely t .angentially t o  t h e  nominal 

(2.5-em. radius) edge of the beam and 2.8 centimeters downstream of the 

accelerator  gr id .  

1 meter downstream o:f +,he thrus tor  i n  t h e  pat.h of t he  ion beam and i t s  

Two neut ra l izers  (shown 

A heavy boron n i t r i d e  block was 

The boron n i t r i d e  block prot,ruded 

The 

A float: ing ta rge t  (coll.ector ) w a s  placed approximately 
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potent ia l  was monitored by a dc voltmeter. 

w a s  always grounded, the  voltage of the  t a rge t  approximately represented 

t h e  coupling voltage between the  neut ra l izer  and t h e  ion-beam-plasma po ten t i a l  

(which w a s  within a few v o l t s  of t h e  f loa t ipg  t a r g e t ) .  

Since t h e  neut ra l izer  cathode 

, 

Variable Geometry Thrustors 

Several d i f fe ren t  var iable  geometry thrus tors  were used during the  

i n i t i a l  phases of the  program, but  they all may be schematically represented 

by f igure  2 .  A stem-heated mercury vaporizer w a s  used t o  supply propellant 

through a cal ibrated o r i f i c e .  Often no neut ra l izer  w a s  used, and neutral-  

i za t ion  w a s  obtained by grounding the co l lec tor  or beam t a r g e t .  Large 

magnetic co i l s  were interchanged t o  produce t h e  proper f i e l d s  with t h e  

d i f f e ren t  s ize  discharge chambers t h a t  were t e s t ed .  Through the  use of 

matched flanges a s ingle  s e t  of screen-accelerator g r ids  were used with 

both the  5- and t h e  2.5-centimeter-diameter anodes. Accelerator gr ids  0.16, 

0.32, and 0.64 centimeter th ick  were also t es ted .  

accelerator  gr ids  had t h e  same equ i l a t e ra l  hole spacing and hole diameters 

as the  f l ight- type thrus tor .  

type ( r e f .  4) composed of a tantalum heater  ribbon wrapped with tungsten 

wire and coated with Radio Mix No. 3. The cathode was shaped i n  a loop 

as shown i n  f igure  2 with a t o % a l  length of 2.5 centimeters and a surface 

a rea  of 1 .3  square centimeters. The thick-oxide-layer cathode w a s  used 

because brush-type cathodes were not ava i lab le  fo r  these ea r ly  t e s t s .  

A l l  t h e  screen and 

The chamber cathode w a s  a thick-oxide-layer 

Vacuum Facili t ,y 

Most of the  tes ts  with e i t h e r  t h e  var iab le  geometry or f l igh t - type  

thrus tors  were conducted i n  a 0.5-meter-dimeter b e l l  jar connected to a 
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large vacuum tank. 

th rus tor  completely inside the vacuum tank. 

i n  diameter and 4.5 meters long. 

o i l  d i f fus ion  pumps with liquid-nitrogen-cooled ba f f l e s .  

Some of the neutral izer  t e s t s  were performed w i t h  t he  

The vacuum tank w a s  1.5 meters 

It was pumped by four 0.8-meter-diameter 

With a thrus tor  

t h e  b e l l  jar operating, t h e  tank pressure w a s  1.5 t o  6.0X10'6 t o r r ,  and 

pressure w a s  1.0 t o  2.0~13-5 torr. 

F.ES'T'::I,::S AX3 DI:SCi'_fSSION 

Ij:i scharge Chad~er Diameter 

Previous programs ( r e f s .  2 and 6 )  had produced consid r b l e  data  w i t h  

t 'hrustors of 5, 10, arid. 20 centimeters i n  diameter and beam currents  of 

G.030 t o  0.125, 0.060 t o  0.600 and 0.125 t o  1.100 amperes, respect ively.  

Continuation of t ,h i s  t rend would yie1.d a t.hrustor s i ze  of about 2.5- 

nentimeter diameter t.0 produce a O.920-mpere beam. A s  a thrus tor  i s  scaled 

aow.ri ,  r iu~ever. ,  b w u  LuaaC:z >ec;;;; u v  ' , - - - - - - -  . L . L I b . L b U Y I .  ni*- -*A- -_-- l n c =  5 5  ?rem. Q.n i n r r e n s e d  

r a t i o  of ion recombin6t.ion at the  .w&i.is because of a l a rge r  wall-surface- 

to-accel.erat;or area r a t i o .  The other loss arises from t h e  use of a shorter  

discharge chamber length.  

length 'below a ce r t a in  value should adversely a f f ec t  both t h e  discharge 

power requirements and the  propellant u t i l i z a t i o n .  If the  thrus tor  diameter 

i s  m a d e  larger (.wi.thout increasing the beam curren t ) ,  t h e  discharge plasma 

becomes more d i lu t e ,  and high propellant u t . i l i za t ions  a re  d i f f i c u l t  t o  

obtain at t h e  lower ion-beam current densit . ies (see eq. 34 or r e f .  7 ) .  

Requirements of aceeleratar  gr id  erosion (appendix A )  fur ther  r e s t r i c t  t he  

se lec t ion  of t,hru.st.or diameter t o  approximately 3 t o  5 centimeters. Final  

s e l ec t ion  of an anode diameter i s  thus a compromise between w a l l  losses ,  

Reference 7 ind ica tes  t h a t  reducing the  chamber 
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plasma density, and accelerator  gr id  erosion. 

Discharge chambers with anode diameters of 2.5 and 5 centimeters were 

constructed. 

e ra tor  gr ids ,  d i s t r ibu to r  plate ,  and cathode type and locat ion.  

of these t e s t s  a re  shown i n  f igure  4. 

i s  plot ted against  t he  propellant u t i l i z a t i o n  eff ic iency fo r  discharge 

chamber diameters of 2.5 and 5.0 centimeters. The smaller diameter chamber 

had la rger  discharge losses  at all propellant u t i l i z a t i o n s  tes ted ,  and 

perhaps more important, it did not exceed a propellant u t i l i z a t i o n  efficiency 

of 50 percent. 

u t i l i z a t i o n  eff ic iency of 80 percent and t h e  discharge chamber lo s ses  

usual ly  began t o  rapidly r i s e  at values of 60 t o  70 percent. 

s t rength of t he  magnetic f i e l d ,  as ant ic ipated ( r e f .  6), w a s  l a rge r  f o r  

t h e  smaller diameter chamber. A s  shown i n  the  next section, t h e  e f f ec t  of 

using different  La/Da values of 2.0 and 1.5 for  t h i s  comparison was minor. 

These two anode diameters were t e s t ed  using the  same accel-  

The r e s u l t  

The discharge energy per beam ion 

The la rger  diameter chamber d id  not exceed a propellant 

The required 

Discharge Chamber Length 

Preliminary t e s t s  with a 5-cent8imeter-diameter t h rus to r  (La/Da equal 

t o  1.0) indicated t h a t  t h e  discharge lo s ses  (per  beam ion)  increased and 

the  propellant u t i l i z a t i o n  decreased as t h e  th rus t  l e v e l  w a s  reduced t o  

0.5 millipound. A s e r i e s  of t e s t s  w a s  therefore  performed t o  measure the  

e f fec t  of an increased discharge chamber length on t h e  performance of the  

th rus to r .  

Figure 5 i s  a p lo t  of t he  discharge power per beam ion f o r  various 

The bes t  length discharge chambers with a 5-centimeter-diameter anode. 

discharge chamber performance w a s  r ea l i zed  at  L ~ D ,  values of about 1.0 t.0 



2.0.  A t  higher values of LdD,, the  discharge losses  rap id ly  increased. 

The m a x i m u m  propellant u t i l i z a t i o n  (not shown on f i g .  5 )  w a s  e s sen t i a l ly  

unchanged by changes i n  t h e  discharge length; at fixed propellant u t i l i za t ion ,  

however, t he  discharge losses  increased with increased length.  The three  

curves presented i n  f igure  5 each represent a d i f fe ren t  value of beam current 

(0.016, 0.023, and 0.030 A )  and, hence, a d i f f e ren t  propellant u t i l i z a t i o n .  

The differences i n  t h e  discharge voltages were caused by using t h i s  parameter 

t o  adjust  t h e  beam current .  

resu l ted  from di f fe ren t  c o i l s  being used f o r  the  d i f f e ren t  length chambers 

and are not considered s igni f icant .  

The differences i n  magnetic f i e l d  in t ens i ty  

On the  bas i s  of t he  da t a  shown i n  f igures  4 and 5, t h e  f l igh t - type  

th rus to r  w a s  designed with a 5-centimeter diameter and an La/Da of 1.5. 

This optimum value w a s  close t o  t h e  i n i t i a l  design of t he  5-centimeter- 

uIcuiIL.uL.I vLyuuuvI _ _ _ _  _ _ - _ _ _  - zr 5 -  Th? ~'I\T.T- v a l i i ~ s  of disch8.rg.e 

energies obtained i n  t h i s  invest igat ion as compared with those of reference 1 

or 5 were believed a t t r i bu tab le  primarily t o  t h e  use of t h e  radial flow 

d i s t r ibu to r  and pa r t ly  t o  a l a rge r  (oxide-coated) cathode surface.  

t h e  operation of a discharge chamber i n  even the  bes t  0.5-millipound thrus tor  

as compared t o  a 3-millipound or higher th rus tor  was poor due t o  unavoidable 

lo s ses  i n  propellant u t i l i z a t i o n  and discharge power. For an electron- 

bombardment ion thrus tor  of t he  type reported herein, t h rus t  l eve l s  below 

2: ------L-.- &le--..- A^- -Q -nCr\nhnno 7 

However, 

10-1 millipounds appear t o  be impractical. Smaller chambers r e s u l t  i n  high 

w a l l  recombination, and l a rge r  chambers (a t  t h i s  low th rus t  l e v e l )  decrease 

t h e  plasma density.  
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Accelerator Grid Thickness 

There are two possible advantages i n  using a th icker  accelerator  grid.  

F i r s t ,  t he  l i fe t ime i s  increased by adding more mater ia l  t o  t he  gr id .  Second, 

t he  loss  os neutral  propellant from the  discharge chamber would be expected t o  

be somewhat decreased. 

Accelerator grids,  0.16, 0.32, and 0.64 centimeter thick,  were tes ted,  and 

the  accelerator  impingement current of the  three  gr ids  as a funct ion of the  net  

accelerat ion voltage i s  presented i n  f igure  6. The normal thickness, 0.16 cent i -  

meter, produced the lowest impingement (about 1 percent of the  beam curren t ) .  

The th icker  gr ids  produced successively higher impingement currents.  The sharp 

r i s e  with decreasing voltage a t  2000 t o  3000 v o l t s  was expected and was caused 

by l o c a l  beam divergence due t o  space charge l i m i t s  between the  grids.  The s teep  

r i s e  above 4 kilowatts  f o r  the th ickes t  g r i d  was probably the  resul t ,  of ions 

s t r ik ing  the  downstream edges of the holes. 

The thickness of t he  gr ids  had negl igible  e f f e c t  on the  propellant u t i l i z -  

a t ion  o r  t h e  discharge chamber losses.  

g r i d  was therefore used i n  the  f l igh t - type  thrus tor .  

ment values, the estimated l i fe t ime of the  nominal g r i d  was grea te r  than the  

required 13,000 hours. 

pingement increased strongly with thickness) ,  no increase i n  l i f e t ime  would be 

expected f o r  the th icker  grids.  With an increased t e s t  l i f e ,  however, the  dawn- 

stream edges of the  g r i d  hole may erode away and the  i n i t i a l l y  high impingement 

may drop t o  a lower value. Such t e s t s  a s  beveling the  downstream edge of the  

acce lera tor  gr id  holes were considered unnecessary i n  t h i s  invest igat ion,  a l -  

though such modifications may r e s u l t  i n  improved (g rea t e r  than 13,000 h r )  accel-  

The normal (and th innes t )  acce le ra tor  

A t  the  measured impinge- 

Based on the  r e s u l t s  of f igure  6 (where the  minimum i m -  
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e ra to r  g r id  l i fe t imes .  

Fl ight  -Type Thrustor 

Discharge chamber. - Performance of the discharge chamber may vary depend- 

ing  on the  condition o r  ac t iva t ion  s t a t e  of t he  oxide cathode. Both the  thick-  

oxide-layer-type cathode, and the  brush-type cathode used i n  t h i s  program pos- 

sessed var ia t ions  i n  emission charac te r i s t ics  with cathode condition. I n  gen- 

e r a l ,  t he  discharge chamber w i t h  a brush cathode performed b e t t e r  than an iden- 

t i c a l l y  shaped discharge chamber with a thick-oxide-layer cathode. 

oxide-layer cathode w a s  therefore  not t e s t ed  i n  the  f l ight- type th rus to r .  

The thick-  

Figure 7 presents t yp ica l  data for  t h e  brush cathode. Data are  shown 

f o r  four d i f f e ren t  values of ion-chamber discharge voltage and var iab le  magnetic 

f i e l d  s t rengths  at f ixed values of propellant flow, accelerat ing voltages, and 

cathode heating power. 

as i f  each fieutral mercury atom containea a bi.&c d i - - g C .  

dropoff i n  beam current and increase i n  discharge power per beam ion at values 

of magnetic f i e l d  s t rength below 1 7  gauss. 

operating region where t h e  discharge was r e l a t i v e l y  insens i t ive  t o  magnetic 

f i e l d  s t rength.  

power per beam ion  at higher values of ion-chamber discharge voltage.  This 

may be  somewhat misleading as t h e  propellant u t i l i z a t i o n  (beam current)  w a s  

a l s o  increased, and higher discharge losses  would be expected. 

ure  w i l l  more c l ea r ly  show the  e f f ec t  of propellant u t i l i z a t i o n  on the  discharge 

lo s ses  f o r  t h e  f l i g h t  th rus tor .  

The propellant flow r a t e  of 0.038 ampere w a s  defined 

T k x  ::zz 2 r -qd -L- - -- 

Above 1 7  gauss, there  w a s  an 

The curves shown i n  f igure 7 a l so  indicate  a higher discharge 

A l a t e r  f i g -  

A s  a compromise between discharge losses  and good propellant u t i l i z a t i o n ,  

a value of beam current of 0.022 ampere, ion-chamber discharge voltage of 

20 v o l t s ,  and magnetic f i e l d  s t rength of 20 t o  30 gauss could be chosen as an 
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optimum. 

might typ ica l ly  reduce t o  the  range of 400 t o  500 with fu r the r  use.  

addition, another fac tor  strongly d i c t a t e s  t he  choice of ion-chamber dis-  

charge voltage. 

cathode erosion and therefore  maximize l i fe t ime.  

The value of 900 electron v o l t s  per ion w a s  somewhat high and 

I n  

A minimum discharge voltage should be used t o  minimize 

Accelerator impingement. - Figure 8 shows a typ ica l  curve of acceler-  

a t o r  impingement versus net accelerat ing voltage fo r  t he  f l i g h t  t h rus to r .  

Conditions of the  test  were: beam current,  0.030 ampere; neut ra l  propellant 

flow, 0.040 equivalent ampere; discharge voltage, 35 vol t s ;  and average 

screen-to-accelerator-grid gap, 0 .L56 centimeter. The net acce lera t ing  

voltage was var ied from 7000 t o  1500 v o l t s .  The r a t i o  of net t o  t o t a l  

accelerating voltage was maintained constant at 0.8. 

impingement current rapidly increased with decreasing voltage.  

value of impingement current over t he  voltage range of 2150 t o  5000 v o l t s  

should permit operation within this range with long accelerator  g r id  

l i f e t imes .  

Below 2150 v o l t s  t he  

The low 

Neutralizer.  - From previous experience, it w a s  possible  t o  pos i t ion  

the  neutral izer  within 0.2 centimeter of t h e  b e s t  radial loca t ion .  The 

f i n a l  posi t ion was a compromise between deep immersion i n  the  beam where 

there  w a s  high erosion of both t h e  boron n i t r i d e  sh i e ld  and neut ra l izer  

cathode and a withdrawn pos i t ion  where space-charge-limited neut ra l izer  

currents  cause high coupling voltsages. 

boron-nitride s h i e l d  cannot withstant  t h e  impingement of t he  normal beam 

current dens i t ies  fo r  more than several  hundred hours and must be located 

at the  low ion densi ty  f r inges  of t he  beam. 

Even a heavy 1.5-centimeter-thick 
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For a l l  t h e  neutral izer  tes ts  the thrus tor  w a s  operated at net and 

t o t a l  accelerat ing voltages of 4000 and 5000 vol t s ,  respect ively.  

t h e  neut ra l izer  tangent ia l ly  at t h e  nominal (2.5-cm radius)  edge of the 

beam resu l ted  i n  a coupling voltage of  about 200 v o l t s  between the  beam 

potent ia l  ( f loa t ing  t a rge t  ) and t h e  neutral izer  cathode (ground). 

t h e  cathode r ad ia l ly  1 centimeter outward ra i sed  the  t a rge t  voltage t o  

approximately 1000 vo l t s .  This voltage was great enough t o  cause anomalous 

behavior of t he  f loa t ing  t a r g e t  and the assumption of equal beam and t a rge t  

po ten t i a l  w a s  no longer va l id .  Moving t h e  neutral izer  t o  0.1 centimeter 

l e s s  than  t h e  nominal beam radius resul ted i n  a lowering of t h e  coupling 

voltage from 200 v o l t s  t o  the  values shown i n  f igure  9 (about 35 V )  . 
circumferential  posi t ion becomes important also,  as a c r i t i c a l  distance 

of 0.1 centimeter w a s  small compared with hole spacings of 0.6 centimeter. 

Placing 

Moving 

The 

n L  L’-- n z * - - ’  ----+--14 no- nncif inn +he h p a m  r i i r r e n t ,  f r o m  t he  t h u s t o r  f ib U A A C  A L I I %  . L I b u v ~ - - - - . -  =- --____. 

w a s  varied,  and t h e  differences i n  neutral izer  emission and coupling voltage 

were noted. The heating power of the neut ra l izer  cathode w a s  held constant 

and somewhat higher than emission l imited temperatures were maintained. 

(The neut ra l izer  cathode heating, even after correcting f o r  end conduction 

losses ,  generally required 20 percent more power per un i t  area than did 

t h e  chamber cathode.) The emission of t he  neutral izer  cathode w a s  d i r e c t l y  

proportional t o  the  beam current and a t  a value s l i g h t l y  l e s s  than the  beam 

current  ( f i g .  9 ( a ) > .  The difference between neut ra l izer  and ion beam currents 

probably represents e lectrons that were drawn i n t o  the  beam from other sources 

wi th in  t h e  vacuum tank. The coupling voltage increased with increasing 

beam current  as shown i n  f igure 9(b) u n t i l  it leveled off  near 35 v o l t s  
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and 0.040 ampere. The sca t t e r  i n  t h e  coupling voltage da t a  w a s  t yp ica l  

and might have been caused by l o c a l  differences i n  the  cathode act ivat ion.  

Previously inact ive cathode areas may become act ivated by ion bombardment, 

and as space-charge-limited flow propably ex is t s ,  a l a rge r  emitt ing area 

would require l e s s  coupling voltage. 

Because of the  s e n s i t i v i t y  of t he  neutral izer  cathode and shield posi t ion,  

most t e s t s  were considered successful i f  t he  coupling voltage were i n  the  

range of 50 t o  200 vo l t s .  

may be indicat ive of too  l i t t l e  shielding or t oo  much immersion of t h e  cathode 

i n  t h e  beam t o  r ea l i ze  a long neut ra l izer  l i f e t ime .  

The unusually low voltages obtained i n  f igure  9 

Propellant flow ca l ibra t ion .  - The porous tungsten plug that gave the  

proper flow r a t e  at t h e  desired temperature l e v e l  had (according t o  the  

6 vendor) cap i l l a r i e s  w i t h  a 3.8-micron pore radius and contained 1.6X10 

pores per square centimeter. 

i n  f i g .  10) was flow cal ibrated by operating it at a constant temperature 

and weighing t h e  weight loss from the  reservoi r .  Mercury flow rates as a 

function of temperature for  two t i p s  made from iden t i ca l  porous tungsten 

a re  a l s o  shown i n  f igure  10. 

t o  +3 percent. 

and found t o  be e s sen t i a l ly  unchanged. 

back t o  t h e  reservoir ,  15 centimeters away. I n  a seqarate tes t ,  t h e  l i q u i d  

head pressure w a s  increased t o  2 atmospheres, and no l i q u i d  mercury w a s  

forced through the  porous plug. 

from 400' t o  580' K i n  30 seconds, and cooled down t o  420' K, 45 seconds 

a f t e r  the  power w a s  turned off .  

The porous tungsten plug t i p  (shown schematically 

Flow r a t e s  f o r  a given plug were reporducible 

Af'ter 100 hours of operation, t h e  flow r a t e  w a s  again checked 

There was negl igible  heat conduction 

Using 8 w a t t s ,  t h e  plug temperature increased 

(The temperature cycling range corresponded 
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t o  two orders of magnitude change i n  flow 

of t he  feed t i p  w a s  judged t o  be somewhat 

r a t e ) .  The temperature response 

slow fo r  an a l t i t u d e  control  

th rus tor  and would probably need improving before use i n  this appl icat ion.  

Magnetic f i e l d s .  - The measured magnetic f i e l d  s t rengths  f o r  t he  

electromagnetic f l ight- type thrus tor  and permanent magnet f l i g h t  -type thrus tor  

are  compared i n  f igure  11. The electromagnetic f i e l d  w a s  produced by a s ingle  

la rge  solenoidal c o i l .  

d i rec t ion)  was found i n  previous t e s t s  ( r e f .  8)  t o  a id  t h e  discharge chamber 

performance. A s  a r e s u l t  of' weight and s i ze  r e s t r i c t ions ,  the  permanent 

magnet f i e l d  shown i n  f igure  l l ( b )  contained a hump at an a x i a l  posi t ion 

of about 2.5 centimeters from the  d is t r ibu tor ,  ra ther  than the  continuously 

diverging f i e l d  produced by the  solenoid. 

a l so  measured 1.3 centimeters from the center l ine t o  give an indicat ion 

of the  radial gradient.  

centimeter radius  increased about 5 percent over t h e  center l ine  values f o r  

most of t he  ax ia l  length.  Greater increases near t he  d i s t r ibu to r  end were 

probably due t o  shape of t h e  d is t r ibu tor  pole piece (shown sketched i n  f i g .  3) .  

The tapered f i e l d  (lower f i e l d  i n  t h e  downstream 

The permanent magnet f i e l d  w a s  

It, w a s  foma  trlar; ~ i l c  riel\; S+i-CI&h ct t h e  1 3- 

Figure 1 2  compares t h e  performance with the  two th rus to r s  i n  terms of 

tne dependence of discharge power per beam ion  on the  propellant u t i l i z a t i o n .  

The discharge power gradually decreases at lower u t i l i z a t i o n s  and rapidly 

increases  at propellant u t i l i z a t i o n  e f f ic ienc ies  higher than 60 o r  70 percent. 

The shape of t h e  f i e l d  of t he  permanent magnet th rus tor  apparently was 

responsible f o r  t h e  decrease i n  t h e  maximum propellant u t i l i z a t i o n ,  but 

below propellant u t i l i z a t i o n  e f f ic ienc ies  of 50 percent there  w a s  no difference 

i n  t h e  discharge lo s ses  per beam ion. Some of t h e  difference i n  the  maximum 
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propellant u t i l i z a t i o n  could a l so  have been the  r e su l t  of a var iable  .acti-  

vat ion s t a t e  of the  cathode from one t e s t  t o  another. Other t e s t s  s i m i l a r  

t o  those shown i n  f igure 1 2  resul ted,  a f t e r  longer running times, i n  a d i s -  

chazge power per beam ion of 400 t o  500 electron v o l t s  per ion  at a propellant 

u t i l i z a t i o n  eff ic iency of 50 percent. 

Thrustor Performance and Endurance Tests 

Variable geometry th rus to r .  - A long duration run w a s  conducted t o  

endurance t e s t  t h e  oxide-coated brush cathode i n  a thrus tor .  A 5-centimeter- 

diameter thrustor  of the  type used i n  reference 6 was u t i l i z e d  fo r  the t e s t .  

The thrustor  w a s  modified by subs t i tu t ing  a radial flow d i s t r ibu to r  f o r  t h e  

uniform-flow type. 

l a t e r  used i n  the  f l ight- type thrus tor .  The t e s t  proceeded f o r  1553 hours 

during which time t h e  thrus tor  was de l ibera te ly  shut down and r e s t a r t ed  54 

times without removal from the  vacuum chamber. The average tes t  values 

a re  l i s t e d  i n  the  last  column of t a b l e  I. 

The brush cathode and coating were iden t i ca l  t o  those 

The thrustor  ion  beam was maintained between 0.015 and 0.020 ampere by 

adjust ing the cathode heating power t o  give an emission of 0.2 t o  0.4 ampere. 

This mean value of t he  discharge power per beam ion  s t ead i ly  dropped from 

an i n i t i a l  value of 600 t o  a f i n a l  value of 400 e lec t ron  v o l t s  per ion.  

The discharge voltage w a s  held constant a t  35 vo l t s .  

a compromise between lower cathode sput te r ing  rates at lower voltages and 

a lower discharge chamber loss per beam ion  at somewhat higher voltages.  

The cathode heating power slowly rose from about 15  t o  22 w a t t s  at 1500 

hours. 

magnetic co i l  power loss ( 2 7  W) w a s  considered unduly high because of an 

This po ten t i a l  w a s  

(Details of t h i s  heating power curve may be found i n  r e f .  3.) The 
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i ne f f i c i en t  design. 

computing the  power-to-thrust. r a t i o  value of 256 watts per millipound l i s t e d  

i n  t ab le  I. Also, a value of 8.7 w a t t s  w a s  added t o  t h e  t o t a l  power t o  

represent t h e  feed system power. 

t e s t  w a s  a steam-heated mercury vaporizer w i t h  an o r i f i c e  plug.) 

An ef fec t ive  value of 8 watts w a s  therefore  used when 

(The actual  feed system f o r  t h i s  endurance 

A t  1551 hours there  vas a l a rge  pressure excursion i n  the  vacuum f a c i l i t y  

t o  the  t o r r  range. Al5hough emission was reestabl ished a f t e r  t h i s  

excursion, one of t he  two cathode heatter wires w a s  broken, and the  other 

f a i l ed  a f t e r  2 hours of operahion. There w a s  l i t t l e  erosion of t he  heater 

wires, and the  f a i l u r e  w a s  i n  a portion wel l  protected from d i r e c t  ion  

bombardment . 
of a second phase, which may have been tantalum n i t r i d e  or oxide. 

ind ica te  probable f a i l u r e  by gas embrit5lement. 

Microphotographs of wire cross sect ion indicated a la rge  amount 

This would 

A t  l e a s t  half  of t he  oxide 

8 .  
LUO,L*Lll& u l 2 l  i&,L&2Xd t k  C G Z , k i k .  

Fl ight  th rus tors .  - An i n i t i a l  t e s t  w a s  performed on t h e  complete f l i g h t -  

type thrus tor ,  which included a porous plug feed system, electromagnet c o i l ,  

and neut ra l izer .  

Specif ic  values of beam current, discharge voltage, cathode heating power, 

and  magnetic f i e l d  were chosen t o  optimize the  propellant u t i l i z a t i o n ,  

discharge power losses ,  and cathode l i fe t ime.  The r e su l t i ng  power-to-thrust 

r a t i o  was 247 watts per millipound at a th rus t  of 0.65 millipound. This 

power t o  th rus t  r a t i o  was somewhat greater than normal because the  discharge 

power was higher due t o  operation at a higher propellant u t i l i z a t i o n .  Also, 

t h e  accelerator  impingement current (for unknown reasons) w a s  s i x  times 

i t s  usual  value.  

The average values of t h i s  t e s t  are  a l s o  l i s t e d  i n  t ab le  I. 

The neut ra l izer  coupling voltage w a s  a l so  somewhat high 
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at 130 t o  200 v o l t s  and the  net accelerat ing voltage of t h e  ion beam w a s  

reduced from 4000 t o  3800 v o l t s  when the  beam t h r u s t  w a s  calculated.  

The f l i g h t  th rus tor  was next modified t o  incorporate a permanent magnetic 

f i e l d .  

e s sen t i a l ly  constant conditions t o  determine i t s  steady s t a t e  operating 

performance. 

of 0.0225 ampere w a s  produced w i t h  144  w a t t s  t o  give a power-to-thrust r a t i o  

of 222 w a t t s  per millipound. 

were normal and much lower than the  electromagnet f l i g h t  th rus tor  t e s t .  

Values were estimated f o r  both the  neut ra l izer  cathode heating power and 

propellant feed power, although no correct ion for neutral izer  coupling voltage 

was m a d e  t o  the calculated th rus t .  No n e u t r d i z e r  was used, and a steam- 

heated vaporizer replaced the  e l e c t r i c a l l y  heated porous plug. 

The permanent magnetic f i e l d  thrus tor  w a s  t e s t e d  f o r  13 hours a t  

The r e s u l t s  of this t e s t  a r e  l i s t e d  i n  t ab le  I. A beam current 

The discharge losses  and accelerator  impingement 

Cathode heat cyclin@;. - For a thrus tor  t o  perform an a t t i t u d e  control  

mission it must be able  t o  be cycled on and of f  a great  many times. 

imposes t h e  stress of thermal cycling and t h e  grea tes t  stress w i l l  be on 

t h a t  component t h a t  has t h e  l a rges t  temperature var ia t ion ,  namely, t h e  cathode. 

Therefore, a s e r i e s  of t e s t s  was undertaken t o  thermally cycle the  cathode 

only. An oxide-coated tantalum brush i d e n t i c a l  t o  t h a t  used i n  t h e  f l i g h t  

th rus tor  w a s  mounted from a pa i r  of copper supports and heated i n  a b e l l  

jar. 

carbonates, the cathode heating voltage w a s  snapped on and off i n  a cyc l ic  

manner allowing 15 seconds fo r  heating and 15 seconds fo r  cooling. The 

cathode reached an equilibrium temperature of 1250° K and 17 w a t t s  heating 

power i n  10 seconds. During cooling, t he  temperature dropped below 900° K 

T h i s  

After an i n i t i a l  period of 1/2 hour t o  decompose the  a lka l ine  earth 
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( l i m i t  of t h e  pyrometer) -in 5 seconds. 

i n  t h e  mid-10" t o r r  range. 

The b e l l  jar pressure w a s  normally 

The first three  t e s t s  Bailed a f te r  5000 t o  15,000 cycles. A four th  

t e s t ,  consis t ing of a bare brush with no oxide coating, w a s  made t o  separate 

t h e  e f f e c t s  of any chemical reac t ion  o r  physical gas absorbtion between 

t h e  oxide and the  tantalum brush from the  e f f ec t s  of thermal fa t igue.  

The b m e  brush w a s  cycled 84,000 t i m e s  at which point t he  t e s t  w a s  stopped 

because it exceeded t h e  50,000 cycle requirement of t h e  estimated mission. 

The core wires were b r i t t l e ,  hawever, and the  brush borke apart  when it 

w a s  removed from the  holder. 

A f i f t h  tes t ,  i n  which a d i f fe ren t  solvent w a s  used t o  clean the  brush 

before coating, w a s  attempted with the iden t i ca l  type of brush cathode. 

T h i s  tes t ,  similarly run t o  the f i r s t  three tests, l a s t e d  f o r  418,000 cycles 

before the  core wires or t ne  brusil L L U ~ ~ Z .  L;;;: zf cx5de f x m  h n i q h ,  either 

by evaporation or by spa l l ing  away, was negl igible .  

The key t o  this improved cathode l i fe t ime w a s  probably not i n  t h e  solvent 

used t o  clean t h e  brush but i n  a thermal gradient t h a t  exis ted i n  the  cathode. 

To reach a surface temperature of 1250° K, t he  i n t e r i o r  core temperature 

m u s t  b e  about 1600° t o  1700° K. 

oxide and tantalum ( r e f .  9 )  becomes ( theore t ica l ly)  s ign i f icant ly  high. 

Chemical reac t ion  rates are  very sensi t ive t o  temperature, and perhaps local 

var i a t ions  i n  t h e  brush oroxide coating could cause spec i f ic  brushes t o  

operate  e i the r  above o r  below a c r i t i c a l  react ion temperature. Nevertheless, 

t h e  demonstration of 418,000 cycles proves that under t h e  correct  conditions 

a brush cathode should conservatively be able t o  meet a mission requirement 

A t  1703O K, t h e  reac t ion  r a t e  between barium 
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of 50,000 thermal cycles.  

CONCLUDING REMARKS 

A lower l i m i t  f o r  t h e  t h r u s t  of an electron-bombardment ion  th rus to r  

appears t o  be about 0.1 t o  0.3 millipound fo r  sa t i s fac tory  performance i n  

a s a t e l l i t e  control  system. If the  chamber diameter i s  reduced t o  2.5 

centimeters or lower, w a l l  recombination lo s ses  r e s u l t  i n  a discharge 

power t h a t  becomes prohibi t ively high. To avoid w a l l  recombinations, t he  

thrus tor  may be made l a rge r  i n  diameter, but  keeping t h e  th rus t  l e v e l  constant 

requires  a reduction of t h e  beam current and, hence, plasma density.  A t  

these lower densi t ies ,  t h e  propellant u t i l i z a t i o n  w a s  sharply reduced. A 

low propellant flow of 0.020 ampere of neut ra l s  i n  a 5-centimeter-diameter 

th rus tor  (corresponding t o  a th rus t  of 0.25 mlb) caused severe d i f f i c u l t y  

i n  maintaining a discharge and extract ing a bean of more than 50-percent 

propellant u t i l i z a t i o n  eff ic iency.  

bombardment thrustor  of 0.5-millipound t h r u s t  w a s  a chamber 5 centimeters 

i n  diameter and a propellant u t i l i z a t i o n  of 50 t o  60 percent. 

propellant u t i l i z a t i o n  i s  j u s t i f i b l e  f o r  t h e  intended mission of s a t e l l i t e  

control .  

A good compromise fo r  a mercury electron-  

The low 

The permanent magnet th rus tor  system, consis t ing of a propellant tank 

and vaporizer, th rus tor ,  and neut ra l izer ,  i s  considered t o  be adaqtable t o  

launch environment and mission requirements. 

e f f i c i en t  for  t h e  low th rus t  l eve l .  

( i n  a separate th rus to r )  subs tan t ia l  l i f e t ime  i n  vacuum tank t e s t s .  

bes t  power-to-thrust r a t i o  achieved with t h e  complete th rus to r  w a s  222 w a t t s  

per millipound at 0.65-millipound th rus t .  If other t h rus to r  missions can 

It has l i g h t  weight and i s  

Furthermore, t h e  cathode has demonstrated 

The 
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t o l e r a t e  or require higher th rus t ,  the same 5-centimeter-diameter f l i g h t -  

type thrus tor  could be used a t  a higher eff ic iency or a lower r a t i o  of power 

t o  th rus t  than obtained herein. Data of reference 2 indicate ,  i n  f ac t ,  

t h a t  a 5-centimeter-diameter th rus tor  operates e f f i c i e n t l y  up t o  4 millipounds 

of t h rus t .  Based on these data,  a 5-centimeter-diameter th rus tor ,  operating 

at a t h r u s t  of 3 millipounds and a specif ic  impulse of 4000 t o  5000 seconds, 

would produce a power-to-thrust r a t i o  of about 200 w a t t s  per millipound. 

(This includes a power l o s s  of 13 watts f o r  t he  feed system and 15 w a t t s  

for neutral izat ion.)  

c r i t i c a l  at t h i s  higher t h rus t  l eve l .  

The accelerator l i fe t ime,  however, would be more 
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APPENDIX A * 

An endurance run w a s  made with a 10-centimeter-diameter permanent 

magnet th rus tor  s i m i l a r  t o  t h a t  described i n  reference 10. This th rus tor  

w a s  operated at  a beam current of 0.13 ampere for  t he  f irst  768 hours and 

0.25 ampere f o r  t he  las t  615 hours. 

on a s ingle  molybdenum accelerator  gr id  0.156 centimeter th ick .  

s i ze  and pat tern were iden t i ca l  t o  those reported herein fo r  t h e  f l i g h t -  

type thrustor  (0.32-cm-diameter holes on a 0.64-cm equ i l a t e ra l  t r iangular  

spacing). After 1383 hours t h e  accelerator  w a s  reweighed, remeasured fo r  

thickness, and rephotographed. The average hole diameter enlargement w a s  

0.02 centimeter while t he  m a x i m u m  (near t h e  gr id  center)  w a s  0.05 centimeter. 

The thickness of t he  gr id  w a s  reduced 0.007 centimeter over t h e  center 

5-centimeter diameter and a diminishing amount towards the outer edges of 

t he  gr id .  

while t h e  measured weight loss  w a s  5.36 grams. 

A t o t a l  of 13821 hours w a s  accumulated 

The hole 

The calculated weight l o s s  from l i n e a r  measurements was 5.7k.7 grams, 

The t o t a l  impingement on t h e  accelerator  gr id  was 2.35 ampere-hours 

at an accelerator gr id  voltage of -1000 vol t s ,  a net accelerat ing voltage 

of 4000 vol ts ,  and an average propellant u t i l i z a t i o n  eff ic iency of 80 percent.  

The erosion from t h i s  impingement, i f  continued l i nea r ly ,  would redme t h e  

web material between holes t o  zer3 with a t o t a l  erosion given by the  r a t i o  

of web thickness t o  the  m a x i m u m  wear, 0.05 centimeter, times 2.35 ampere- 

hours or 14.9 ampere-hours. 

t o  be the  point at which t h e  web thickness w a s  zero. 

The l i fe t ime of t h e  accelerator  w a s  assumed 

Using the technique of reference 11, an erosion of 14 .9  ampere-hmrs, 

and a l i fe t ime of 13,000 hours, f igure  13 was prepared. The th rus to r  
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diameter becomes a function of t h rus t  and propellant u t i l i z a t i o n .  

accelerator  impingement due t o  charge exchange w a s  calculated by equation B(16) 

of reference 11. A d i r e c t  impingement value (estimated from t h e  measured 

impingement values of t he  1383-hr t e s t  minus a calculated charge exchange 

v a h e )  was a l s o  added t o  the  charge exchange value. It i s  in t e re s t ing  t o  

note t h a t  fo r  a given thrus t ,  propellant u t i l i za t ion ,  and erosion rate, the  

accelerator  gr id  l i fe t ime i s  proportional t o  t h e  four th  power of g r id  diameter 

(eq. ( 6 ) ,  r e f .  11). 

The 
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TABLE I. - PERF0F"CE OF MERCURY ELECTRON-BOMBAFiDMENT THRUSTORS 

Beam current ,  A 
Propellant flow r a t e ,  

Net accelerat ing voltage,  V 
Accelerator voltage,  V 
Discharge voltage, V 
Thrust, mlb 
Length of t e s t ,  hr 
Neutralizer cathode l i f e ,  hr 

equivalent amperes of neutrals  

Beam power, W 
Discharge power, W 
Discharge cathode power, W 
Neutralizer cathode power, W 
Magnetic c o i l  power, W 
Propellant feed power, W 
Accelerator drain power, 

Total  power, W 
Power t o  t h r u s t  r a t i o ,  w / C u  
Speci f ic  impulse, sec 
Weight of complete t-hrustor 

- -  I 

system ( l e s s  propel lan t ) ,  Kg 

' l ight-type thrus tors  

Electro- 
magnetic 

0.023 

0.035 
4000 
-1000 

25 
"0.65 

95 
58 

92 .O 
21.6 
1 9  .o 
15.5 

8 .O 
8.7 
6 .Q 

170.8 

"4050 

5 .O 

0r.0 
LUL 

Permanent 
magnet 

0.0225 

0.047 
4000 

-1000 
30 

0.65 
13  ------ 

90 .o 
1 2 . 9  
1 6  .O 

b15 .5 
0 

b8.7 
0.9 

144 .O 

3020 

3 .O 

773 
YLlY 

Phrustor cathode 
endurance 

t e s t  

0.018 

0.034 
4000 

-1000 
35 

0.52 
1553 

72 .O 
8.0 

b15 .5 
'27 .O 
b8 .7 
1 .o 

'128.2 
2 47 

3340 

15 e 0  

------ 
a 
Calculated fo r  a net accelerat ing voltage of 3800 v o l t s  ( ins tead  of 

Neither neut ra l izer  nor e l e c t r i c a l  feed system w a s  used; estimated 

Design of electromagnet too  large; t o t a l  power reduced by 1 9  w a t t s .  

4000 V . )  t o  correct  for neutral izer  coupling. 

values .  

b 

C 
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Figure 5. - Discharge chamber length varied in 5-centimeter- 
diameter variable geometry thrustor. Net accelerating voltage, 
4ooo volts; accelerator voltage, -1000 volts; neutral propellant 
flow, 0.047 ampere. 
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